翻訳と辞書
Words near each other
・ "O" Is for Outlaw
・ "O"-Jung.Ban.Hap.
・ "Ode-to-Napoleon" hexachord
・ "Oh Yeah!" Live
・ "Our Contemporary" regional art exhibition (Leningrad, 1975)
・ "P" Is for Peril
・ "Pimpernel" Smith
・ "Polish death camp" controversy
・ "Pro knigi" ("About books")
・ "Prosopa" Greek Television Awards
・ "Pussy Cats" Starring the Walkmen
・ "Q" Is for Quarry
・ "R" Is for Ricochet
・ "R" The King (2016 film)
・ "Rags" Ragland
・ ! (album)
・ ! (disambiguation)
・ !!
・ !!!
・ !!! (album)
・ !!Destroy-Oh-Boy!!
・ !Action Pact!
・ !Arriba! La Pachanga
・ !Hero
・ !Hero (album)
・ !Kung language
・ !Oka Tokat
・ !PAUS3
・ !T.O.O.H.!
・ !Women Art Revolution


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

ultrametric space : ウィキペディア英語版
ultrametric space
In mathematics, an ultrametric space is a special kind of metric space in which the triangle inequality is replaced with d(x,z)\leq\max\left\. Sometimes the associated metric is also called a non-Archimedean metric or super-metric. Although some of the theorems for ultrametric spaces may seem strange at a first glance, they appear naturally in many applications.
== Formal definition ==

Formally, an ultrametric space is a set of points M with an associated distance function (also called a metric)
:d\colon M \times M \rightarrow \mathbb
(where \mathbb is the set of real numbers), such that for all x,y,z\in M, one has:
# d(x, y) \ge 0
# d(x, y) = 0 iff x=y
# d(x, y) = d(y, x) (symmetry)
# d(x, z) \le \max \left\ (strong triangle or ultrametric inequality).
In the case when M is a group and d is generated by a length function \|\cdot\| (so that d(x,y) = \|x - y\|), the last property can be made stronger using the Krull sharpening〔Planet Math: (Ultrametric Triangle Inequality )〕 to:
: \|x+y\|\le \max \left\ with equality if \|x\| \ne \|y\|.
We want to prove that if \|x+y\| \le \max \left\, then the equality occurs if \|x\| \ne \|y\|. Without loss of generality, let us assume that \|x\| > \|y\|. This implies that \|x + y\| \le \|x\|. But we can also compute \|x\|=\|(x+y)-y\| \le \max \left\. Now, the value of \max \left\ cannot be \|y\|, for if that is the case, we have \|x\| \le \|y\| contrary to the initial assumption. Thus, \max \left\=\|x+y\|, and \|x\| \le \|x+y\|. Using the initial inequality, we have \|x\| \le \|x + y\| \le \|x\| and therefore \|x+y\| = \|x\|.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「ultrametric space」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.